Underwater 3D Reconstruction Based on Physical Models for Refraction and Underwater Light Propagation

نویسنده

  • Anne Jordt
چکیده

In recent years, underwater imaging has gained a lot of popularity partly due to the availability of off-the-shelf consumer cameras, but also due to a growing interest in the ocean floor by science and industry. Apart from capturing single images or sequences, the application of methods from the area of computer vision has gained interest as well. However, water affects image formation in two major ways. First, while traveling through the water, light is attenuated and scattered, depending on the light’s wavelength causing the typical strong green or blue hue in underwater images. Second, cameras used in underwater scenarios need to be confined in an underwater housing, viewing the scene through a flat or dome-shaped glass port. The inside of the housing is filled with air. Consequently, the light entering the housing needs to pass a water-glass interface, then a glass-air interface, thus is refracted twice, affecting underwater image formation geometrically. In classic Structure-from-Motion (SfM) approaches, the perspective camera model is usually assumed, however, it can be shown that it becomes invalid due to refraction in underwater scenarios. Therefore, this thesis proposes an adaptation of the SfM algorithm to underwater image formation with flat port underwater housings, i. e., introduces a method where refraction at the underwater housing is modeled explicitly. This includes a calibration approach, algorithms for relative and absolute pose estimation, an efficient, non-linear error function that is utilized in bundle adjustment, and a refractive plane sweep algorithm. Finally, if calibration data for an underwater light propagation model exists, the dense depth maps can be used to correct texture colors. Experiments with a perspective and the proposed refractive approach to 3D reconstruction revealed that the perspective approach does indeed suffer from a systematic model error depending on the distance between camera and glass and a possible tilt of the glass with respect to the image sensor. The proposed method shows no such systematic error and thus provides more accurate results for underwater image sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Thermocline Formation on Underwater Acoustic Waves Propagation in Persian Gulf

Thermocline layer have remarkable effects on acoustic propagation in Persian Gulf environment. So far, no comprehensive research has been conducted to explore thermocline layer, especially its characteristics including top, thickness, and thermal gradient of thermocline in Persian Gulf. Besides, effects of thermocline on underwater acoustic propagation including transmission loss and sound chan...

متن کامل

Underwater Active Oneshot Scan with Static Wave Pattern and Bundle Adjustment

Structured Light Systems (SLS) are widely used for various purposes. Recently, a strong demand to apply SLS to underwater applications has emerged. When SLS is used in an air medium, the stereo correspondence problem can be solved efficiently by epipolar geometry due to the co-planarity of the 3D point and its corresponding 2D points on camera/projector planes. However, in underwater environmen...

متن کامل

Perspective and Non-perspective Camera Models in Underwater Imaging - Overview and Error Analysis

When capturing images underwater, image formation is affected in two major ways. First, the light rays traveling underwater are absorbed and scattered depending on their wavelength, creating effects on the image colors. Secondly, the glass interface between air and water refracts the ray entering the camera housing because of a different index of refraction of water, hence the ray is also affec...

متن کامل

3 D Reconstruction Methodologies : a Review

Usually underwater images will have a less visibility conditions, for which the 3D reconstruction for these images has become a challenging tasks. This is because of problems like harsh environmental conditions (black smoke, white smoke) or may be of infraction by floating partials and aquatic animals. The other problem that arises like light propagation in underwater which affects the image co...

متن کامل

Simulating Deep Sea Underwater Images Using Physical Models for Light Attenuation, Scattering, and Refraction

When adapting computer vision algorithms to underwater imaging, two major differences in image formation occur. While still traveling through the water, light rays are scattered and absorbed depending on their wavelength, creating the typical blue hue and low contrast in underwater images. When entering the underwater housing of the camera, light rays are refracted twice upon passing from water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014